草莓视频成人,国产98色在线 | 国,免费在线观看,人人操人人,最好的观看2018中文

新聞

新聞

News

離子注入的阻滯機制

點擊量:1657 日期:2023-10-07 編輯:硅時代

當離子轟擊進入硅襯底后,與晶格原子碰撞將逐漸失去能量,最后停留在硅襯底內。有兩種阻滯機制,一種是注入的離子與晶格原子的原子核發生碰撞,經過這種碰撞將引起明顯的散射并將能量轉移給晶格原子,這種過程稱為原子核阻滯,在這種“硬”碰撞過程中,晶格原子可以獲得足夠的能量而從晶格束縛能中脫離出來,這將引起晶體結構的混亂和損傷。另一種阻滯過程為入射離子與晶格電子產生碰撞,在電子碰撞過程中,入射離子的路徑幾乎不變,能量轉換非常小,而且晶體結構的損傷也可以忽略。這種“軟”碰撞稱為電子阻滯。總阻滯力,即離子在襯底內移動單位距離時的能量損失,可以表示為:

Stotal=Sn+Se

其中,Sn為原子核阻滯力;Se為電子阻滯力。圖1說明了阻滯機制,圖2則顯示了阻滯力與離子速率的關系。

圖1 不同的阻滯示意圖

圖2 阻滯機理與離子速率的關系

離子注入過程的離子能量范圍從極淺結(Ultra-Shallow Junction,USJ)的0.1keV低能量到阱區注入的1MeV高能量,這個能量范圍如圖2中的I區域所示。從圖的最左邊可以看出對于低能量與高原子序數的離子注入過程,主要的阻滯機制為原子核阻滯。對于高能量、低原子序數的離子注入,電子阻滯機制比較重要。

  • 聯系我們
  • 聯系電話:0512-62996316
  • 傳真地址:0512-62996316
  • 郵箱地址:sales@si-era.com
  • 公司地址:中國(江蘇)自由貿易試驗區蘇州片區——蘇州工業園區金雞湖大道99號納米城西北區09棟402室
  • 關注與分析
蘇州硅時代電子科技有限公司 版權所有 Copyright 2020 備案號:蘇ICP備20007361號-1 微特云辦公系統 微納制造 MEMS設計
一鍵撥號 一鍵導航